Preferred Devices

General Purpose Transistor

PNP Silicon

This transistor is designed for general purpose amplifier applications. It is housed in the SOT-723 which is designed for low power surface mount applications.

• This is a Pb-Free Device

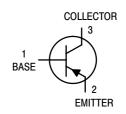
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	V_{CEO}	-65	V
Collector-Base Voltage	V_{CBO}	-80	V
Emitter-Base Voltage	V_{EBO}	-5.0	V
Collector Current – Continuous	I _C	-100	mA

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board (Note 1) T _A = 25°C	P _D	265	mW
Derate above 25°C		2.1	mW/°C
Thermal Resistance, Junction to Ambient (Note 1)	$R_{\theta JA}$	470	°C/W
Total Device Dissipation Alumina Substrate (Note 2) T _A = 25°C	P _D	640	mW
Derate above 25°C		5.1	mW/°C
Thermal Resistance, Junction to Ambient (Note 2)	$R_{\theta JA}$	195	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


1

- 1. FR-5 = $1.0 \times 0.75 \times 0.062$ in.
- 2. Alumina = $0.4 \times 0.3 \times 0.024$ in. 99.5% alumina.

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

SOT-723 CASE 631AA STYLE 1

3B = Specific Device Code M = Date Code

ORDERING INFORMATION

Device	Package	Shipping [†]
BC856BM3T5G	SOT-723 (Pb-Free)	8000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Preferred devices are recommended choices for future use and best overall value.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•				
Collector – Emitter Breakdown Voltage (I _C = -10 mA)	V _{(BR)CEO}	-65	_	_	V
Collector – Emitter Breakdown Voltage ($I_C = -10 \mu A, V_{EB} = 0$)	V _{(BR)CES}	-80	_	_	V
Collector – Base Breakdown Voltage $(I_C = -10 \mu A)$	V _{(BR)CBO}	-80	_	-	V
Emitter – Base Breakdown Voltage $(I_E = -1.0 \mu A)$	V _{(BR)EBO}	-5.0	_	-	V
Collector Cutoff Current $(V_{CB} = -30 \text{ V})$ $(V_{CB} = -30 \text{ V}, T_A = 150^{\circ}\text{C})$	Ісво	_ _	- -	-15 -4.0	nA μA
ON CHARACTERISTICS					
DC Current Gain $ (I_C = -10 \; \mu\text{A}, \; V_{CE} = -5.0 \; \text{V}) \\ (I_C = -2.0 \; \text{mA}, \; V_{CE} = -5.0 \; \text{V}) $	h _{FE}	- 220	150 290	- 475	-
Collector – Emitter Saturation Voltage ($I_C = -10$ mA, $I_B = -0.5$ mA) ($I_C = -100$ mA, $I_B = -5.0$ mA)	V _{CE(sat)}	-	- -	-0.3 -0.65	V
Base – Emitter Saturation Voltage ($I_C = -10$ mA, $I_B = -0.5$ mA) ($I_C = -100$ mA, $I_B = -5.0$ mA)	V _{BE(sat)}	-	-0.7 -0.9	- -	V
Base – Emitter Voltage ($I_C = -2.0$ mA, $V_{CE} = -5.0$ V) ($I_C = -10$ mA, $V_{CE} = -5.0$ V)	V _{BE(on)}	-0.6 -	- -	-0.75 -0.82	mV
SMALL-SIGNAL CHARACTERISTICS					
Current – Gain – Bandwidth Product $(I_C = -10 \text{ mA}, V_{CE} = -5.0 \text{ Vdc}, f = 100 \text{ MHz})$	f _T	100	_	_	MHz
Output Capacitance (V _{CB} = -10 V, f = 1.0 MHz)	C _{obo}	_	_	4.5	pF
Noise Figure (I _C = -0.2 mA, V _{CE} = -5.0 Vdc, R _S = 2.0 k Ω , f = 1.0 kHz, BW = 200 Hz)	NF	_	_	10	dB

TYPICAL CHARACTERISTICS

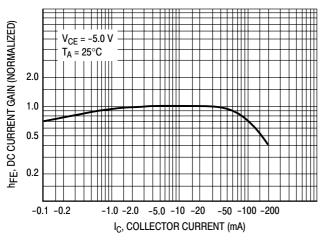


Figure 1. DC Current Gain

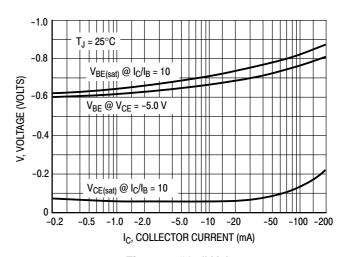


Figure 2. "On" Voltage

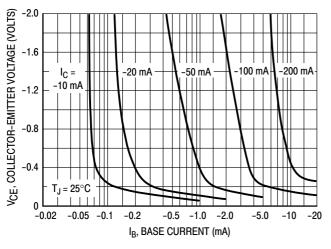


Figure 3. Collector Saturation Region

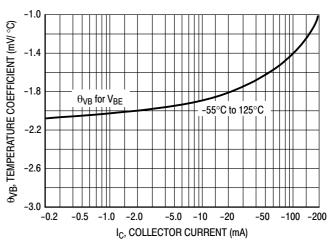


Figure 4. Base-Emitter Temperature Coefficient

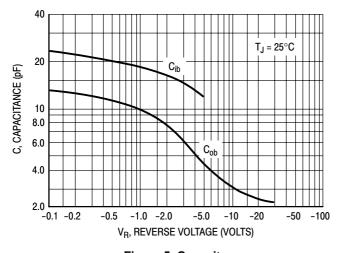


Figure 5. Capacitance

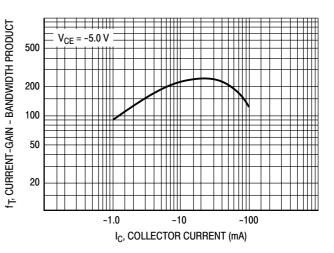
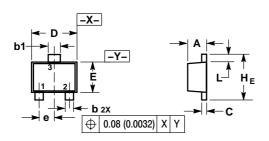
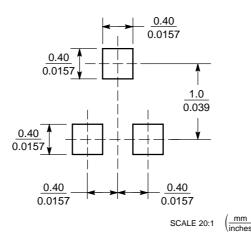



Figure 6. Current-Gain - Bandwidth Product

PACKAGE DIMENSIONS

SOT-723 CASE 631AA-01 ISSUE B

STYLE 1: PIN 1. BASE 2. EMITTER 3. COLLECTOR


NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
 Y14.5M. 1982.
- 2. CONTROLLING DIMENSION: MILLIMETERS.
- MAXIMUM LEAD THICKNESS INCLUDES LEAD
 FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM
 THICKNESS OF BASE MATERIAL
- THICKNESS OF BASE MATERIAL.

 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

		MILLIMETERS			INCHES		
	DIM	MIN	NOM	MAX	MIN	NOM	MAX
	Α	0.45	0.50	0.55	0.018	0.020	0.022
	b	0.15	0.21	0.27	0.0059	0.0083	0.0106
	b1	0.25	0.31	0.37	0.010	0.012	0.015
	С	0.07	0.12	0.17	0.0028	0.0047	0.0067
	D	1.15	1.20	1.25	0.045	0.047	0.049
	Е	0.75	0.80	0.85	0.03	0.032	0.034
	е	0.40 BSC			0.016 BSC		
	Hε	1.15	1.20	1.25	0.045	0.047	0.049
Г	L	0.15	0.20	0.25	0.0059	0.0079	0.0098

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.